Rules for the Propagation of Uncertainty

Function	Rectangular Distribution	Normal (Gaussian) Distribution
$\mathrm{z}=\mathrm{x}+\mathrm{a}$ where $\mathrm{a}=$ constant	$\Delta \mathrm{z}=\Delta \mathrm{x}$	$\Delta \mathrm{z}=\Delta \mathrm{x}$
$\mathrm{z}=\mathrm{b}^{*} \mathrm{x}$ where $\mathrm{b}=$ constant	$\Delta \mathrm{z}=\|\mathrm{b}\|^{*} \Delta \mathrm{x}$	$\Delta \mathrm{z}=\|\mathrm{b}\|^{*} \Delta \mathrm{x}$
$\mathrm{z}=\mathrm{b}^{*} \mathrm{x}^{2}$ where $\mathrm{b}=$ constant	$\Delta z / z=2 * \Delta x / x$	$\Delta z / z=2 * \Delta x / x$
$\mathrm{z}=\mathrm{b}^{*} \mathrm{x}^{n}$ where $\mathrm{b}=$ constant	$\Delta \mathrm{z} / \mathrm{z}=\|\mathrm{n}\|^{*} \Delta \mathrm{x} / \mathrm{x}$	$\Delta \mathrm{z} / \mathrm{z}=\|\mathrm{n}\| * * \mathrm{x} / \mathrm{x}$
$z=x+y$	$\Delta \mathrm{z}=\Delta \mathrm{x}+\Delta \mathrm{y}$	$\Delta z=\sqrt{ }\left(\Delta x^{2}+\Delta y^{2}\right)$
$z=x-y$	$\Delta \mathrm{z}=\Delta \mathrm{x}+\Delta \mathrm{y}$	$\Delta z=\sqrt{ }\left(\Delta x^{2}+\Delta y^{2}\right)$
$z=x * y$	$\Delta z / \mathrm{z}=\Delta \mathrm{x} / \mathrm{x}+\Delta \mathrm{y} / \mathrm{y}$	$\Delta z / z=\sqrt{ }\left((\Delta x / x)^{2}+(\Delta y / y)^{2}\right)$
$z=x / y$	$\Delta \mathrm{z} / \mathrm{z}=\Delta \mathrm{x} / \mathrm{x}+\Delta \mathrm{y} / \mathrm{y}$	$\Delta z / z=\sqrt{ }\left((\Delta x / x)^{2}+(\Delta y / y)^{2}\right)$

Where
$\Delta=$ uncertainty

Rectangular Distribution: Use when dealing with precision of measuring device

Gaussian Distribution: Use when dealing with multiple measurements of a variable

Examples of Dealing with Compound Functions (Combined Forms of the Functions Illustrated Above)

Example 1: Calculate the uncertainty of the acceleration caused by Earth's gravity (g) using 30 measurements of the time for a tennis ball to fall y_{f} meters.

Step 1: Using the equation $y_{f}=y_{0}+v_{y o} t_{f}+0.5 \mathrm{gtf}^{2}$ where the positive y-axis is pointed vertically downward, the acceleration caused by Earth's gravity would equal:

$$
\mathrm{g}=2 \mathrm{y}_{\mathrm{f}} / \mathrm{tf}^{2}=2 \mathrm{yfff}^{2} \quad \text { where } \mathrm{y}_{0}=0 \mathrm{~m} \text { and } \mathrm{v}_{\mathrm{y} 0}=0 \mathrm{~m} / \mathrm{s}
$$

Step 2: Since there are 30 measurements of t_{f}, t_{f} squared in the formula, one should consider using the normal distribution uncertainty propagation rules above. This will only apply for when the percent uncertainty of $\mathrm{y}_{\mathrm{f}} \ll$ percent uncertainty of t_{f}.

Step 3: The equation is a composite of two functions described above:

$$
z=b^{*} x^{n} \text { where } b=\text { constant } \quad \text { and } z=x^{*} y
$$

Step 4: Let $h=2 t f^{2}$ so the uncertainty of h will be:

$$
\Delta \mathrm{h} / \mathrm{h}=|-2|^{*} \Delta \mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{f}}=2 \Delta \mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{f}}
$$

Step 5: Rewrite the equation for g to include the new variable, h :

$$
g=y_{f}^{*} h
$$

Step 6: The uncertainty of g will now be:

$$
\Delta \mathrm{g} / \mathrm{g}=\sqrt{ }\left(\left(\Delta \mathrm{y}_{\mathrm{f}} / \mathrm{y}_{\mathrm{f}}\right)^{2}+(\Delta \mathrm{h} / \mathrm{h})^{2}\right)
$$

Step 7: Substitute the $\Delta \mathrm{h} / \mathrm{h}$ calculated in Step 4:

$$
\Delta \mathrm{g} / \mathrm{g}=\sqrt{ }\left(\left(\Delta \mathrm{y}_{\mathrm{f}} / \mathrm{y}_{\mathrm{f}}\right)^{2}+\left(2 \Delta \mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{f}}\right)^{2}\right)=\sqrt{ }\left(\left(\Delta \mathrm{y}_{\mathrm{f}} / \mathrm{y}_{\mathrm{f}}\right)^{2}+4\left(\Delta \mathrm{t}_{\mathrm{f}} / \mathrm{t}_{\mathrm{f}}\right)^{2}\right)
$$

Example 2: Calculating the uncertainty of velocity using the position of a falling ball in successive frames in a movie.

Step 1: Use the equation $v=\left(y_{i}-y_{i-1}\right) /\left(t_{i}-t_{i-1}\right)$ to calculate v.
Step 2: Both the uncertainty of y and t are based on the rectangular distribution of uncertainty.

Step 3: The equation is a composite of two functions described above:

$$
z=x-y \quad \text { and } \quad z=x / y
$$

Step 4: Let $h_{1}=y_{i}-y_{i-1}$ so the uncertainty of h will be:

$$
\Delta \mathrm{h}_{1}=\Delta \mathrm{y}+\Delta \mathrm{y}=2 \Delta \mathrm{y} \quad \text { where } \Delta \mathrm{y}_{\mathrm{i}}=\Delta \mathrm{y}_{\mathrm{i}-1}=\Delta \mathrm{y}
$$

Step 5: Let $h_{2}=t_{i}-t_{i-1}$ so the uncertainty of h will be:

$$
\Delta \mathrm{h}_{1}=\Delta \mathrm{t}+\Delta \mathrm{t}=2 \Delta \mathrm{t} \quad \text { where } \Delta \mathrm{t}_{\mathrm{i}}=\Delta \mathrm{t}_{\mathrm{i}-1}=\Delta \mathrm{t}
$$

Step 6: Rewrite the equation for v to include the new variables, h_{1} and h_{2} :

$$
v=h_{1} / h_{2}
$$

Step 7: The uncertainty of v will now be:

$$
\Delta \mathrm{v} / \mathrm{v}=\Delta \mathrm{h}_{1} / \mathrm{h}_{1}+\Delta \mathrm{h}_{2} / \mathrm{h}_{2}
$$

Step 8: Substitute the $h_{1}, \Delta h_{1}, h_{2}$, and Δh_{2} defined in Steps 4 \& 5:

$$
\Delta \mathrm{v} / \mathrm{v}=2 \Delta \mathrm{y} /\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}-1}\right)+2 \Delta \mathrm{t} /\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)=2\left(\Delta \mathrm{y} /\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}-1}\right)+\Delta \mathrm{t} /\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)\right)
$$

