Rules	for	the	Propa	gation	of	Uncertainty
-------	-----	-----	-------	--------	----	-------------

Function	Rectangular Distribution	Normal (Gaussian) Distribution
z = x + a where a = constant	$\Delta z = \Delta x$	$\Delta z = \Delta x$
z = b*x <i>where</i> b = constant	$\Delta z = b * \Delta x$	$\Delta z = b * \Delta x$
$z = b^*x^2$ where $b = constant$	$\Delta z / z = 2 * \Delta x / x$	$\Delta z / z = 2 * \Delta x / x$
$z = b^*x^n$ where $b = constant$	$\Delta z / z = n * \Delta x / x$	$\Delta z / z = n * \Delta x / x$
z = x + y	$\Delta z = \Delta x + \Delta y$	$\Delta z = \sqrt{(\Delta x^2 + \Delta y^2)}$
z = x - y	$\Delta z = \Delta x + \Delta y$	$\Delta z = \sqrt{(\Delta x^2 + \Delta y^2)}$
z = x * y	$\Delta z/z = \Delta x/x + \Delta y/y$	$\Delta z/z = \sqrt{((\Delta x/x)^2 + (\Delta y/y)^2)}$
z = x / y	$\Delta z/z = \Delta x/x + \Delta y/y$	$\Delta z/z = \sqrt{((\Delta x/x)^2 + (\Delta y/y)^2)}$

Where

 Δ = uncertainty

Rectangular Distribution: Use when dealing with precision of measuring device

Gaussian Distribution: Use when dealing with multiple measurements of a variable

Examples of Dealing with **Compound Functions** (Combined Forms of the Functions Illustrated Above)

Example 1: Calculate the uncertainty of the acceleration caused by Earth's gravity (g) using 30 measurements of the time for a tennis ball to fall y_f meters.

Step 1: Using the equation $y_f = y_0 + v_{yo}t_f + 0.5gt_f^2$ where the positive y-axis is pointed vertically downward, the acceleration caused by Earth's gravity would equal:

 $g = 2y_f/t_f^2 = 2y_ft_f^{-2}$ where $y_0 = 0$ m and $v_{y0} = 0$ m/s

Step 2: Since there are 30 measurements of t_f , t_f squared in the formula, one should consider using the normal distribution uncertainty propagation rules above. This will only apply for when the percent uncertainty of $y_f <<$ percent uncertainty of t_f .

Step 3: The equation is a composite of two functions described above:

 $z = b^*x^n$ where b = constant and z = x * y

Step 4: Let $h = 2t_{f^2}$ so the uncertainty of h will be:

 $\Delta h / h = |-2| * \Delta t_f / t_f = 2\Delta t_f / t_f$

Step 5: Rewrite the equation for g to include the new variable, h:

 $g = y_f * h$

Step 6: The uncertainty of g will now be:

 $\Delta g/g = \sqrt{((\Delta y_f/y_f)^2 + (\Delta h/h)^2)}$

Step 7: Substitute the Δh / h calculated in Step 4:

 $\Delta g/g = \sqrt{((\Delta y_f/y_f)^2 + (2\Delta t_f / t_f)^2)} = \sqrt{((\Delta y_f/y_f)^2 + 4(\Delta t_f / t_f)^2)}$

Example 2: Calculating the uncertainty of velocity using the position of a falling ball in successive frames in a movie.

Step 1: Use the equation $v = (y_i - y_{i-1}) / (t_i - t_{i-1})$ to calculate v.

Step 2: Both the uncertainty of y and t are based on the rectangular distribution of uncertainty.

Step 3: The equation is a composite of two functions described above:

z = x - y and z = x / y

Step 4: Let $h_1 = y_i - y_{i-1}$ so the uncertainty of h will be:

 $\Delta h_1 = \Delta y + \Delta y = 2\Delta y$ where $\Delta y_i = \Delta y_{i-1} = \Delta y$

Step 5: Let $h_2 = t_i - t_{i-1}$ so the uncertainty of h will be:

$$\Delta h_1 = \Delta t + \Delta t = 2\Delta t$$
 where $\Delta t_i = \Delta t_{i-1} = \Delta t$

Step 6: Rewrite the equation for v to include the new variables, h_1 and h_2 :

$$v = h_1 / h_2$$

Step 7: The uncertainty of v will now be:

$$\Delta v/v = \Delta h_1/h_1 + \Delta h_2/h_2$$

Step 8: Substitute the h_1 , Δh_1 , h_2 , and Δh_2 defined in Steps 4 & 5:

$$\Delta v/v = 2\Delta y / (y_i - y_{i-1}) + 2\Delta t / (t_i - t_{i-1}) = 2 (\Delta y / (y_i - y_{i-1}) + \Delta t / (t_i - t_{i-1}))$$